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1  |  INTRODUC TION

Pulmonary fibrosis includes primary pulmonary fibrosis, secondary 
fibrosis, idiopathic fibrosis, interstitial pulmonary fibrosis and in-
terstitial pneumonia. Idiopathic pulmonary fibrosis (IPF), a chronic, 
progressive fibrotic disorder of the interstitial lung, results in pa-
tients having an average lifespan of 3–5 years.1 Although numerous 
causes of pulmonary fibrosis have been identified through ongoing 
research, the development of effective medications remains limited. 
Nintedanib and pirfenidone are the main medications currently uti-
lized in clinical settings. The disease's progression involves complex 
mechanisms and pathways, including disrupted epithelial repair, im-
paired host defence, cellular senescence and imbalanced immune 
responses, such as the activation of macrophage subsets and fibrop-
roliferative response kinases associated with abnormalities.2 The 

activation of the transforming growth factor (TGF) and its subse-
quent pro-fibrotic and developmental pathways contribute to the 
development of pulmonary fibrosis.3

Connective tissue growth factor (CTGF) exerts a broad impact 
on cell migration, adhesion and proliferation, establishing it as a crit-
ical element in the development of fibrotic diseases such as renal 
fibrosis,4 cardiac fibrosis,5 and pulmonary fibrosis, among others. 
There exist numerous reviews on CTGF's involvement in renal and 
cardiac fibrosis. However, its precise function in pulmonary fibrosis 
remains less clearly defined.

Transforming growth factor-β (TGF-β) and CTGF, both recog-
nized as profibrotic growth factors, function downstream of the 
nuclear translocation of β-catenin, leading to enhanced fibrogene-
sis.6 CTGF, a downstream effector of TGF-β, serves as a matricellu-
lar protein that influences the function of growth factors, adhesion 
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Abstract
Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disor-
ders characterized by increased fibroblast activity and the accumulation of substantial 
amounts of extracellular matrix, along with inflammatory damage and the breakdown 
of tissue architecture. This condition is marked by a significant mortality rate and a 
lack of effective treatments. The depositing of an excessive quantity of extracellu-
lar matrix protein follows the damage to lung capillaries and alveolar epithelial cells, 
leading to pulmonary fibrosis and irreversible damage to lung function. It has been 
proposed that the connective tissue growth factor (CTGF) plays a critical role in the 
advancement of pulmonary fibrosis by enhancing the accumulation of the extracel-
lular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pul-
monary fibrosis is examined, and a summary of the development of drugs targeting 
CTGF for the treatment of pulmonary fibrosis is provided.
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molecules, integrins, and the extracellular matrix (ECM); thus, play-
ing a pivotal role in tissue remodelling and fibrosis.7 In models of pul-
monary fibrosis, CTGF is often utilized to demonstrate the severity 
of the condition. Studies and reports on drugs targeting CTGF have 
also been conducted.8 Elucidating CTGF's role in pulmonary fibrosis 
is deemed crucial for the exploration of drugs targeting CTGF for the 
treatment of this condition.

1.1  |  Pulmonary fibrosis

Pulmonary fibrosis represents the end-stage of lung diseases char-
acterized by the proliferation of fibroblasts and the accumulation 
of substantial ECM, alongside inflammatory damage and the de-
struction of tissue architecture.9 In essence, when healthy alveolar 
tissue is damaged and heals improperly, structural abnormalities 
arise, leading to respiratory failure and, potentially, death. It has 
been reported that the COVID-19 virus may induce and exacer-
bate pulmonary fibrosis, increasing the risk of mortality.10 IPF, as 
a form of pulmonary fibrosis, is associated with several complica-
tions, including pulmonary hypertension, chronic obstructive pul-
monary disease (COPD) and lung cancer.11 Currently, Nintedanib 
and Pirfenidone are prescribed to slow the decline in lung func-
tion, reduce mortality and lower the risk of acute exacerbation 
(AE).12

1.2  |  The molecular mechanism underlying 
pulmonary fibrosis

The hallmark of pulmonary fibrosis is the excessive deposition of 
collagen and ECM. The ECM of fibroblasts facilitates fibroblast 
activation and sustains pathology.13 The primary morphological 
features of pulmonary fibrosis result from an imbalance between 
two physiological processes in the lungs (Figure  1): (1) the 

proliferation/apoptosis of fibroblasts and myofibroblasts14; 
(2) the synthesis/degradation of ECM components.15 These 
processes are closely linked, with the disruption of fibroblasts' 
and myofibroblasts' normal functioning being a key driver of ECM 
homeostasis imbalance, thereby leading to the development of 
pulmonary fibrosis.16

The finding that alveolar epithelial cells (AECs) and fibroblasts 
in pulmonary fibrosis produce abnormal ECM implicates the TGF-β 
signalling pathway.17 Aberrant regulation of the TGF-β/SMAD path-
way is identified as a significant pathogenic mechanism in pulmonary 
fibrosis.18,19

Multiple integrins are implicated in pulmonary fibrosis: αvβ6 fa-
cilitates TGF-β activation in AECs, while αvβ1 plays a similar role in 
myofibroblasts, which are essential in the development of fibrotic 
diseases.20,21 Regardless of whether TGFβ, ECM, integrins or EMT 
influence pulmonary fibrosis, CTGF's involvement is evident. Thus, 
targeting CTGF has emerged as a novel direction for research in 
treating these conditions.

1.3  |  CTGF involved in pulmonary fibrosis

CTGF is a cysteine-rich 38-kDa peptide secreted from human um-
bilical vein endothelial cells (HUVECs) and belongs to the CCN fam-
ily, also known as CCN2.22 It is a pleiotropic protein with significant 
fibrotic activity.23 TGF-β, a key cytokine that promotes pulmonary 
fibrosis, works upstream of CTGF, which plays a vital role in the dis-
ease. Evidence of CTGF's contribution to pulmonary fibrosis includes 
(1) elevated levels of CCN2 in patients with pulmonary fibrosis and 
higher plasma CTGF levels compared to normal controls,22 (2) in-
creased CTGF expression in mouse models of pulmonary fibrosis in-
duced by bleomycin and radiation,24,25 and (3) identification of CTGF 
as a critical gene in pulmonary fibrosis through meta-analysis.26 This 
paper will detail the pathways through which CTGF influences pul-
monary fibrosis.

F I G U R E  1 Overview of molecular 
mechanism of pulmonary fibrosis. Some 
alveolar type II cells may undergo the 
EMT process and differentiate into 
fibroblasts and myofibroblasts.14 Original 
and differentiated myofibroblasts are 
activated by TGF-β and secrete ECM, 
leading to increased pulmonary fibrosis.
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1.3.1  |  TGF-β: a downstream protein of CTGF

TGF-β plays a crucial role in the pathogenesis of pulmonary fibro-
sis by activating fibroblasts and stimulating ECM production.27 
Alveolar macrophages are prompted to release substances such as 
CC chemokine ligand 2 (CCL2),28 oxidized phospholipids,29,30 and 
citrullinated vimentin (Cit-Vim),31 which enhance the expression of 
TGF-β and CTGF, exacerbating pulmonary fibrosis. TGF-β also pro-
motes fibroblast proliferation, stimulates granulation tissue forma-
tion and collagen deposition.32

The multifunctional cytokine TGF-β induces CTGF expression 
strongly through the Smad signalling pathway. CTGF is influenced 
by TGF-β, resulting in a feedback loop amplifying TGF-β levels in 
tissues.33 TGF-β induced FN expression was decreased by CTGF 
siRNA transfection. TGF-β initially influences extracellular signal-
regulated kinase (ERK) phosphorylation, followed by disintegrin 
and metalloproteinase 17 (ADAM17) phosphorylation. It also ac-
tivates ribosomal S6 kinase 1 (RSK1), thus affecting the binding of 
enhancer-binding protein β (C/EBPβ) to the CTGF promoter. This 
process ultimately regulates CTGF expression in human lung epi-
thelial cells (A549).34 Recent research has demonstrated that CTGF 
is at the downstream of TGF-β; still, it can affect the expression of 
TGF-β. In a mouse model of fibrosis, there is a notable rise in CTGF 
expression when using an adenovirus vector encoding active TGF-β 
(AbTGF-β). The interaction between CTGF and TGF-β necessitates 
a higher CTGF concentration to elevate fibrosis markers and TGF-β 
expression individually, whereas a lower concentration achieves 
simultaneous induction of both TGF-β and CTGF. This observation 
suggests a synergistic induction of pulmonary fibrosis by CTGF and 
TGF-β.33 It has been reported that CTGF increases the activity of 
TGF-β by binding to the N-terminal structural domain of TGF-β, re-
sulting in a worsening of fibrosis.33 Some researchers posit that the 
interaction between TGF-β ligands and receptors leads to Smad3 
phosphorylation, forming a complex with Smad4. This complex 
binds the Smad-binding element (SBE) in the CTGF proximal pro-
moter, activating CTGF transcription.6

Inhibition of TGF-β is a pivotal strategy in IPF treatment, as it can 
mitigate pulmonary fibrosis. For instance, current preclinical studies 
have shown that roxadustat administration reduces experimental 
pulmonary fibrosis by inhibiting TGF-β1/Smad activation and de-
creasing CTGF expression.35

1.3.2  |  Lipoprotein receptor (LRP): a receptor 
for CTGF

The low-density LRP belongs to the low-density lipoprotein (LDL) 
receptor family and has been identified as one of the receptors 
for CTGF. Immunoprecipitation data have shown that CTGF can 
bind to LRP, whereas cells deficient in the LRP gene are unable to 
bind to CTGF.36 CTGF is known to induce phosphorylation of ly-
sine residues in LRP. Upon binding to LRP, CTGF not only triggers 
tyrosine phosphorylation in the asparagine-proline-any amino 

acid-tyrosine (NPXY) motif within the cytoplasmic domain of LRP, 
initiating downstream signalling pathways with the assistance 
of specific linker proteins in the cytoplasm but also leads to the 
transport of CTGF to the intracellular lysosome through the cell 
membrane via a small concave region, where it is hydrolyzed, los-
ing its biological activity. The expression of LRP has been found 
to correlate with CTGF in vitro experiments.37 In mouse hepatic 
stellate cells, LRP can activate CTGF, influencing cell adhesion and 
migration.38

LRP-6 is co-activated by CTGF and TGF-β in renal fibrosis and 
influences fibrosis by enhancing the WNT/β-catenin pathway.39 The 
Wnt/β-catenin signalling pathway, found dysregulated in microar-
rays from patients with lung fibrosis, exacerbates pulmonary fibrosis 
when activated.40 It has been demonstrated that CTGF and TGF-β 
synergistically enhance the expression of α-SMA in fibroblasts in 
an LRP1-dependent manner. The absence of LRP1 converts the an-
tiproliferative effect of TGF-β in fibroblasts into a proliferative ef-
fect.41 Betulinic acid (BA) significantly reduced the levels of Wnt3a 
and LRP6 in mice with bleomycin-induced lung fibrosis.42

1.3.3  |  Integrins: CTGF interaction affects fibrosis

Integrins, as transmembrane receptors, facilitate the connection 
between cells and their external environment.43 The integrin com-
plex on the cell surface serves as the primary receptor for CTGF, 
and integrin-linked kinase (ILK) plays a key role in mediating inte-
grin signalling. CTGF binding to cell surface integrins activates ILK 
signalling.44 ILK has been identified as a regulator of epithelial-
mesenchymal transition (EMT) in various epithelia, including those 
of the kidney, ovary, lens and mammary glands.45,46 Overexpression 
of CTGF in AT II cells has been shown to increase ILK gene and pro-
tein levels and silencing ILK with siRNA significantly reduced both 
CTGF and fibronectin levels, suggesting that EMT can mediate the 
effects of CTGF in cells via ILK.47 Typically, lung fibroblasts differen-
tiate from other cell types; however, periostin signalling can induce 
myofibroblast differentiation by prompting fibroblasts to release 
pro-fibrotic mediator CTGF via beta-1 integrin.48,49 CCN2 enhances 
fibronectin adhesion through integrin α5β1.50 Pre-adipocyte factor-
1 (Pref-1) significantly influences airway fibrosis in patients with 
chronic obstructive asthma through the integrin receptor 51/ERK/
AP-1 signalling pathway, inducing CTGF expression in human lung 
fibroblasts.51 CTGF increases chondrosarcoma cell migration by en-
hancing MMP-13 expression through αVβ1 integrin. CTGF disrupts 
alveolarization and induces pulmonary fibrosis through β3 integrin, 
FAK, ERK and NF-κB signalling pathways.52 In murine models of liver 
fibrosis, MMP-13 has been shown to promote fibrosis,53 whereas it 
can reduce overall ECM deposition in IPF.54 The specific mechanism 
by which CTGF influences MMP-13 in pulmonary fibrosis requires 
further investigation. CTGF also interacts with other integrins to in-
fluence fibrosis in various organs, such as αvβ1 in liver and kidney 
fibrosis,55–57 α5β1 in the adhesion and migration of activated pan-
creatic stellate cells,58 and αvβ1 in gingival fibrosis.59 Although these 
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interactions have not been demonstrated in pulmonary fibrosis, they 
provide a direction for future research.

Inhibitors targeting αvβ1 have been shown to mitigate bleomycin-
induced lung fibrosis and carbon tetrachloride-induced liver fibro-
sis.43 The αvβ6 integrin is a crucial in vivo activator of TGF-β in the 
lung, and inhibition of αvβ6 has been found to improve pulmonary 
fibrosis.60

1.3.4  |  ECM: CTGF's influence

A notable characteristic of pulmonary fibrosis is the improper 
deposition of ECM.61 The ECM is a three-dimensional, non-
cellular complex structure present in all tissues and vital for life. 
The remodelling of the ECM, mediated by CTGF, hinders muscle 
regeneration.62 A wide range of ECM proteins exists, most of 
which are linked to pulmonary fibrosis. Studies have shown that 
suppressing CTGF expression in lung fibroblasts significantly re-
duces fibronectin and type 1 collagen significantly.63 In models of 
pulmonary fibrosis induced by bleomycin, mice with a knockout of 
CTGF exhibit less collagen deposition than their wild-type coun-
terparts.63,64 CTGF is known to prompt collagen expression via 
the JNK pathway. The treatment of lung fibroblasts with CTGF 
activates the Rac1/MLK3/JNK signalling pathway, leading to the 
activation of AP-1 and the recruitment of c-Jun and c-Fos to the 
promoter of collagen I, ultimately stimulating the expression of 
collagen I in human lung fibroblasts.65 Furthermore, the downreg-
ulation of miR-26a, resulting in the post-transcriptional repression 
of CTGF, has been reported to encourage the differentiation of 
MRC-5 human fetal lung fibroblasts into pathological myofibro-
blasts and to promote collagen production.66 The relationship be-
tween CTGF and ECM proteins, capable of positive or negative 
feedback, is highly intricate. The detailed mechanisms underlying 
these interactions remain to be further elucidated.

1.3.5  |  EMT: facilitated by CTGF

EMT, a process through which cells lose their epithelial character-
istics and gain mesenchymal traits, is pivotal in mammalian growth 
and development, wound healing and cancer metastasis.67,68 During 
EMT, the expression of mesenchymal markers such as α-SMA, 
fibroblast-specific protein-1 (FSP1), vimentin and desmin increases, 
indicating increased pulmonary fibrosis.69–71 In  vitro studies have 
demonstrated that mediators like TGF-β and CTGF can induce EMT 
in human epithelial cells, thereby facilitating fibrogenesis via ECM 
production.72 Treatment with TGF-β leads to reduced E-cadherin 
levels and increased expression of specific mesenchymal markers. 
Suppression of CTGF through siRNA-mediated approaches reduces 
the expression of α-SMA and restores E-cadherin levels.73 Citrulline 
vimentin has been found to stimulate CTGF expression and increase 
its levels in primary lung fibroblasts.31 The suppression of CTGF ex-
pression in human embryonic fibroblasts has been shown to inhibit 

α-SMA and vimentin expression.74 In mice genetically modified to 
overexpress CTGF, an overexpression of mesenchymal cell markers 
was observed, suggesting that EMT occurred.73,75 Subsequent ex-
periments have indicated that CTGF encourages EMT through the 
ILK pathway.47 miR-30c-5p, a microRNA that usually ranges from 
18 to 24 nucleotides in length and targets CTGF, has been shown 
to hinder the EMT process in A549 cells by influencing CTGF and 
ATG5-related autophagy.76 CTGF is instrumental in EMT and affects 
the progression of pulmonary fibrosis.

1.4  |  Drugs targeting CTGF for pulmonary fibrosis

CTGF is significantly involved in pulmonary fibrosis (Figure 2) and 
fibrosis in other organs, presenting a potential target for treatment. 
Several drugs aimed at CTGF are currently under investigation. 
Research on fibrosis has utilized many CTGF-targeting molecules, 
including antibodies, siRNA, short hairpin RNA (shRNA) and natural 
compounds (Table 1).8,77 A nanotherapeutic approach using CTGF 
siRNA-DegradaBALL (LEM-S401) has been demonstrated to 
inhibit CTGF/CCN-2 effectively and persistently for treating skin 
fibrosis.78 Anti-CTGF oligonucleotides have been applied in treating 
hyperplastic keloid scars.79 Pamrevlumab, a recombinant human 
antibody against CTGF, has shown promise as a treatment for IPF and 
has entered phase 3 clinical trials, making it one of the most noted 
agents.80,81 The use of Anti-CTGF single-chain variable fragment 
antibody (anti-CTGF scFv) has been reported to significantly 
lessen the severity of pulmonary fibrosis in mice, highlighting its 
therapeutic potential.82 There might be additional therapeutic 

F I G U R E  2 Schematic summary of the mechanisms involved 
in CTGF in pulmonary fibrosis. CTGF is secreted from fibroblasts 
into the extracellular space and acts on fibroblasts. (1) CTGF/
RAC1/MLK3/AP-1 affects the components of ECM and aggravates 
pulmonary fibrosis; (2) Differentiation of lung fibroblasts is 
induced by CTGF/Pref-1/α5β1/ERK/AP-1; (3) TGF-β induces CTGF 
expression through ERK/ADAM17/RSK1/ C/EBP-β pathway; (4) 
CTGF promotes upregulation of MMP-13 through αvβ3 /FAK/ERK/
NF-κB dependent pathway and aggravates pulmonary fibrosis.
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agents for treating pulmonary fibrosis through the CTGF pathway. 
This section reviews these potential drugs (Table  2). Atorvastatin, 
typically used as a hypolipidemic agent, was found in one study to 
mitigate lung fibrosis by lowering CTGF expression in a mouse model 
of bleomycin-induced lung fibrosis.83

2  |  CONCLUSION

Pulmonary fibrosis remains a critical health issue that necessitates 
immediate attention. Factors such as the environment, age and ge-
netics can influence the progression of pulmonary fibrosis, a condi-
tion characterized by a high mortality rate and a median survival time 
of 3–5 years post-diagnosis. Since the outbreak in 2019, COVID-19 
has significantly affected daily life. In severe instances, COVID-19 
impairs the respiratory system, leading to pneumonia and pulmo-
nary fibrosis. Research has indicated that COVID-19 exacerbates fi-
brosis in individuals with pulmonary fibrosis,95 and elevated levels of 
CTGF and TGF-β have been observed in AECs infected with SARS-
CoV-2.96 Anti-CTGF therapy, as a potential treatment for fibrosis, is 
expected to mitigate pulmonary fibrosis in severe COVID-19 cases 
and aid in recovery.77 CTGF is crucial in the development of pulmo-
nary fibrosis.

TGF-β is recognized for its vital role in the progression of 
pulmonary fibrosis, influencing the disease through various 

mechanisms. As a protein downstream of TGF-β, CTGF is signif-
icant in pulmonary fibrosis across multiple pathways. There is a 
positive feedback loop between CTGF and TGF-β that intensifies 
fibrosis. Current investigations into drugs have revealed that CTGF 
antibodies can curtail pulmonary fibrosis via the TGF-β pathway, 
with these drugs now in phase 3 clinical trials. Additionally, CTGF 
can interact with integrins, affecting the emergence of EMT and 
the accumulation of the ECM; thus, influencing pulmonary fibro-
sis. Various potential miRNAs or drugs targeting CTGF impact in-
tegrins and EMT. LRP and CTGF play a specific role in the fibrosis 
of other organs together. Yet, the function of CTGF and LRP in 
pulmonary fibrosis remains unconfirmed, presenting an interest-
ing avenue for future research. While many mechanisms are still to 
be clarified, compiling potential drugs targeting CTGF provides in-
sights into the development of treatments for pulmonary fibrosis 
and offers a valuable perspective for future studies on the mech-
anisms driving the progression of the disease.
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TA B L E  1 Drugs that target CTGF.

Drug name Description Stage References

Atorvastatin Inhibition of CTGF (CCN2)/ERK signalling pathway Preclinical 83,84

Pamrevlumab Peptides targeting CTGF Phase III 80,85

siRNA-DegradaBALL (LEM-S401) CTGF-Targeting siRNA can treat skin fibrosis Preclinical 78

BLR-100/BLR-200 CTGF-Targeting Peptides can treat PDAC Preclinical 86

RXI-109 CTGF-Targeting siRNA can treat subretinal fibrosis PhaseI/II 87

Drug name Description References

Roxadustat Inhibition of the TGF-β1/Smad pathway 
decreased CTGF

35

Thalidomide Inhibition of TGF-β1 induced ECM 88

Adiponectin Reduces paraquat-induced TGF-β1 and 
α-SMA

89

Nagilactone D Improving lung fibrosis by regulating 
the TGF-β/Smad signalling pathway

90

Gentiopicroside (GPS) Reduction of TGF-β1 and CTGF 
expression in mice with pulmonary 
fibrosis

91

Withaferin A Inhibition of CTGF expression, and 
TGF-β and Smad phosphorylation

92

Pioglitazone Inhibits the expression of TNF-α, 
procollagen I and CTGF

93

Nervilia fordii Extract Inhibition of TGF-β/Smad signalling 
pathway

94

TA B L E  2 Pulmonary fibrosis drugs 
target CTGF-related pathways.
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